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A NEW FOUNDATION FOR A SIMPLIFIED 

PRIMAL INTEGER PROGRAMMING ALGORITHM* 

by 

Fred Glover 

1. INTRODUCTION 

The purpose of  this paper is  to  show that tbe conceptual  foundations and 

presentation of R.  D.  Young's Simplified Primal Integer Programming Algorithm  [8] 

can be simplified  further on the basis of a  few fundamental algebraic relations. 

These relations derive  from the approach underlying the author's Pseudo Primal- 

Dual Integer Programming Algorithm  [3]  which contributed  to  the basis  for  [8] 

and,  in their present development,  provide new choice rules  that yield a finite 

primal method.     In addition,  a criterion of optimality  is  introduced that gen- 

erally permits  the algorithm to be  terminated before  the customary optimality 

conditions are manifested. 

2. DESCRIPTION OF THE PROBLEM 

We represent  the ordinary linear programming problem    PI    as  that of 

maximizing in nonnegative variables 

n 

% = aoo + E VV 
subject  to 

n 

Xi " ai0 + £ aii(~t1^   »   i = i»   •••» m   » (1) 

x^j  ■ -(-t  )   ,  j  =  1,   ...,  n   , 

The author  is  deeply indebted to Professor Richard D.  Young  for many stimulating 
discussions  that  have contributed  to  the development of this paper. 



or  In matrix form to maximize    xn    subject  to 

X =  A0T0   ,   A0  =   (An,   A.,   ....   A  ) 

X  = 

nH-n 

,   T    = 

1 " 

-'l 
-t 

2 

• 

• 

-t n 
Li           «J 

The matrix A0 is dual  feasible  if an  > 0  for j = 1, ..., n , and 

primal feasible  if a  > 0  for i = 1, ..., m + n .  As is well known, an opti- 

mal solution to Pi  is immediately given by X = A.  when both primal and dual 

feasibility hold. 

The pure integer programming problem P2 , which provides the chief focus of 

this paper, is the same as PI except that the components of X are additionally 

required to be integers.  Following the lead of R. D. Young [6, 7], we will specify 

a method for solving P2  that yields a nonnegative (primal feasible) integer X 

and a nondecreasing value of x  at each stage of the solution process.  To 

provide a foundation for this method, we review the version of the simplex al- 

gorithm that exhibits the same characteristics in solving PI except that the 

successive X vectors may not be Integer. 

t 
The value of such an approach is at least three fold.  First, it is possible to 
begin with a known feasible Integer solution and obtain progressively better ones. 
Second, one may discontinue the process of solving P2 at any stage and still 
have a workable, if not optimal, solution.  Third, the method typically pro- 
vides a range of feasible integer solutions instead of single best one, which 
may be useful in certain applications.  (These features may of course be of 
little advantage in solving problems that are extremely resistant to the method, 
unless such problems are correspondingly difficult for other algorithms.) 



3.  THE PRIMAL SIMPLEX ALGORITHM (PSA) 

Beginning with A0 primal feasible, the primal simplex method for solving 

PI determines a sequence of representations for X : 

X = A0T0 = AJT1 = A2T2 = ... = AkTk , 

Th = (1, -t*     -th     ..., -t*)   . h = 0, 1, ..., k 
12       n 

where t (j « 1, ..., n) is nonnegative, a < a , and A is primal feasible 

for each h . When PI is bounded for optimality, the matrix A (for finite k) 

is also dual feasible. 

For simplicity, we will let A and T denote any matrix A and vector 

T , and let A and T denote the corresponding A and T . Then the 

precise rules of the PSA are as follows: 

1. If a,,, > 0 for all ]   >  1   ,   then X = A  is an optimal solution. Oj   « J   = ' o r 

Otherwise,  select    s   >   1     such that    a       < 0   . 
OS 

2. If a^  < 0 for all  i > 1 , PI has an unbounded optimum.  Otherwise, 
is » = r 

compute ö ■ Min  (a. /a, ) 
s     „  io  is 

a. >0 
is 

+ 
3.  Select v such that a  > 0 and a /a  = 6  . 

vs vo vs   s 

4.  Determine A by the rules: 

A = -A /a 
s    s vs 

Ä = A - A (a ./a  )  if j ^ s . 
j   j   s vj  vs 

5.  Let  t s x  and t,   = t,  for j ^ s .  Designate Ä and T to be 
s   v      j   j 

the current A matrix and T vector, and return to instruction 1. 

We do not concern ourselves with tiebreaking rules in the choice of v , since 
those that assure finiteness for the PSA have little bearing on finiteness for 
a primal Integer method. 



Because the PSA Is quite effective  for  solving    PI   ,   it  is natural   to seek an 

adaptation of this algorithm for solving    P2     that maintains A primal  feasible 

and integer at each stage.     The first step  toward  such an adaptation (the 

Rudimentary Primal Algorithm)   is straightforward,  and has apparently been redis- 

covered on several occasions   (see, e.g.,   [1,   5,  6]). 

4.     THE  RUDIMENTARY PRIMAL ALGORITHM   (RPA) 

Assume that  the constant components of  the  initial    A   matrix are  integers 

and  the    t.    are nonnegative  integer variables. 

As  Ralph Gomory   [A]   has   shown,equation   (1)   then implies   the  cut 
n 

H^I+Elv^-v • <2) 

where >. ^ 0 and s  is a nonn'igative integer variable. Thus X = AT may be 

augmented to include (2) without altering the set of feasible integer solutions to 

P2 .  Based on this, the RPA occurs by replacing instuction 3 of the PSA with the 

instruction 3A below. 

3A.  Select as the source equation for (2) any equation i  such that 

a,  > 0 and 0 < a, /a.  < 9  (e.g., the equation v of instruc- 
is *   I   io    isJ   =    s 

tion  3).     Let    X = a.     ,  and designate   (2)   to be equation    v    of 

X = AT  . 

Designating   (2)   to  be equation    v     is  simply  a symbolic device  to  specify  the 

transformation of    A     into    Ä    by Instruction  4 of  the PSA  (hence  of  the  RPA).     It 

is unnecessary  to augment X ■ AT    by  (2)   if one  is  interested only in  the values 

of  the original variables x     . 

[u]     denotes  the greatest  integer    < u 
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On the other hand, it Is obvious that if equation (2) as determined by 3A 

were adjoined to X * AT , then it would qualify to be selected as equation v in 

instruction 3 of the PSA. Also, the coefficient a   bequeathed by instruction 3A 
vs   ^       } 

is always 1 \LaiS/
aisJ/ • These facts clearly assure that the successive A 

matrices determined by the RPA will be all integer and primal feasible.  Unfor- 

tunately, however, there is no assurance that the RPA will converge to an optimal 

integer solution. 

In a highly original paper [6], Ricnard D. Young showed how the RPA could be 

extended by the addition of a complex set of rules to produce a finite primal in- 

teger algorithm.  Subsequently, drawing on certain ideas from [3], he was able to 

develop a much simpler set of rules whose justification, however, remained com- 

plicated.  Relying still more heavily on [3], we now introduce an alternate frame- 

work which provides the simpler rules from a few elementary theorems, and in ad- 

dition provides other rules that lead to a convergent algorithm. 

5.  THE SIMPLIFIED PRIMAL ALGORITHM 

+ 
To produce a convergent primal integer algorithm, it suffices to' 

(i)  adjoin to X ■ AT an additional primal feasible and all integer 

equation (call it r) whose coefficients a .  satisfy certain 

properties in relation to the A  , 

(ti)  select s  in instruction 1 of the RPA by reference to the properties 

of equation r , 

One may stop and restart this procedure at finite intervals in the execution of 
the RPA if the number of digressions is finite.  This can be assured for example 
by reliance on an intervening criterion of progress, such as an uninterrupted in- 
crease in the sum of the negative a   for j ^ 1 , or in the value of a00 

(R. D. Young's "transition cycles"). 



(iii)  periodically select the source equation for (2) In instruction 3A 

of the RPA by reference to the size of the coefficients a.   (or * is 

other criteria to be introduced subsequently). 

We develop the properties that we wish equation r  to satisfy (in addition to 

being consistent with the other equations of X = AT ), while simultaneously 

motivating and justifying the choice of s  according to (ii) .  To this end, we 

introduce the following result: 

Lemma:  Let A, « A, - kA  for some scalar k . Then for each pair of indices 
        J   j    s 

i . r : 

a .a.  < a a.. (^ a a,. , = a a.,) 
rj is   rs ij    rs ij     rs ij 

if and only if 

a .a,  < a a,, (> a a,. , = a a..) 
rj is   rs ij    rs ij     rs ij 

Proof: By definition, 

a .a.  = (a , - ka )a.  = a .a.  - ka a. rj is    rj    rs  is   rj is    rs is 

Also, 

a a.  " a (a.. - ka. ) « a a.. - ka a. rs ij   rs ij    is    rs ij    rs is 

Thus 

a .a. - a a,. = a .a.  - a a^, rj is   rs ij   rj is   rs ij 

This proves the lemma. 

t 
This  lemma is essentially Lemma 2 of   [3]. 



Note that the definition of A.  in the foregoing lemma accords with the 

definition of A  for J j* s in instruction 4 of the RPA. Using this same 

definition, we now extend the result of the lemma to a lexicographic relation- 

ship between vectors. 

Theorem 1: 

(HI)  a .A < a A, (> a A. , = a AJ 
rj s   rs j    rs j     rs j 

if and only if 

(H2)  ä ,A < a A, (> a A, , = a AJ 
rj s   rs j    rs j     rs j 

Proof;  Let p »» Min(i : a .a. ^ a a,.)  and q = Min(l : a .a,  ^ a a, .) . 
      K rj is   rs ij      M rj is   rs ij 

By the lemma, p = q and Theorem 1 follows Immediately. 

Theorem 1 gives direct access to the properties we desire the reference 

equation r to possess.  Indeed, we will want equation r to be created so that 

s may be selected to satisfy (HI) of Theorem 1.  The power of Theorem 1 is that 

it implies, for s so selected, that equation r will still satisfy the same 

properties relative to the new matrix A .  In addition, when the appropriate 

choice rules are implemented, the theorem assures that a form of lexicographic 

progress will occur in passing from A to A . 

To make the foregoing precise, define 

A vector A,  is defined to be lexicographically smaller than a vector A^ 

(symbolized A^ < A,  or \  >  A, )  if and only if the first nonzero component 

of A. - A,  is positive. 



for thos'?  J > 1 such  that a      t 0  .    Then we specify the choice of s  in 

instruction 1 so that: 

a  > 0 and A  < A* for all  i ^ s (s , j > 1) such that a  > 0 . rs s    j •J       » J = rj 

Note that if there exists a j  such that A. < 0 and a . > 0 , then A J j rj s 

exists and is lexicographically negative. (There is clearly no need to consider 

the possibility A* ■ A^ for j ^ k since the initial A for j ^ 1 include 

the - I matrix, and hence begin and remain linearly independent.) 

The properties that we require equation r to satisfy are then as follows: 

(PI)  A  < 0 -> a  > 0 , 

(P2)  a , < 0 -> A* ^ A* . 
rj j    s 

It nay be observed that any equation with all positive coefficients will 

automatically satisfy both  (PI)  and  (P2) .  In particular it suffices to create 

equation r initially with a  ■ 1  for all j ^ 1  and a   equal to an upper 

r    tt 
bound for  > t. . L    J 

An Interesting consequence of  (PI)  is that if a.  > 0  (equivalently, 

a* > 0), then the relation A* < A* for a  > 0 Implies a,,, > 0 for all 
Os ■ s   j      rj       r      Oj - 

j > 1 , and hence A is dual feasible.  But a  < 0 implies that any change in 
US 

t 
These properties, as developed in connection with the Pseudo Primal-Dual In- 
teger Programming Algorithm, are approximately equivalent to R. D. Young's sub- 
sequent definition of an "arranged tableau" in [8].  Note that (P2) »> (PI) 

If there exists a j  such that  a  > 0 and A^ < 0 . J rj j 
tt r 
Under the assumption that P2  Is bounded, any all-integer linear form I  a  ,t. 

can be maximized by the simplex method subject to X ■ AT to determine an upper 
bound a n •  It is implied by our results to follow that if the a   satisfy 

(PI)  and  (P2) , and if a  < 1 , then X ■ A  already provides an optimal 
solution to  (P2) .      r0 



A  must produce an (integer) increase in a00 . Thus, in a bounded problem, 

the number of changes in A  must be finite whether the algorithm itself is 

finite or not. Our next theorem summarizes the joint implications of Theorem 1 

and the properties (PI)  and  (P2) we have required of equation r . 

Theorem 2;   If (PI)  and (P2)  are satisfied for the matrix A , then  (HI) of 

Theorem 1 is true, and (PI) and (P2)  are also satisfied for A . 

-* Ä * 
Moreover, A, > A  for all j  such that a . > 0 (in particular, 

'  j   s J rj        r 

-*  £    * - 
A-  > A    ,  where    s     is defined relative  to    A    as    s    is  to    A). 

s s 

Proof;     The definition of    A      directly implies     (HI)     for  those    j  f'  s    such  that 

a       >  0   ,   and     (P2)     implies     (HI)     for  those     j     such  that    a       <  0   .     If 

a       « 0   ,   (PI)     follows   from    (PI)     and  the   fact   that    A.   ^ 0     for  all    j   , 

Thus,   (H2)    is  true by Theorem 1 and    A,   <  0 => ä  .   > 0  .    Hence     (PI)     is 
j        rj 

satisfied for Ä . Also, dividing (H2)  through by a a   gives 

AJ > A  when a . > 0 and A > A,  when a 5 < 0 , J f* s .  The former 
j   s       rj s   j       rj    ' J 

proves the last assertion of the theorem, and the latter in conjunction 

with A* > A* proves  (P2)  holds in Ä if  1 ^ s .  But  (P2)  also 
s   s J 

— JL    ff 
holds if j = s  since A = A  . This completes the proof. 

Having now established the form of equation r and the definition of the 

index s , it remains to specify the choice of the source equation for equation 

(2) in instruction 3A.  The following result, in conjunction with Theorem 2, lays 

the foundation for this choice. 

Theorem 2, from results of [3], has a close resemblance to some of the results 
of Young's original primal algorithm [6], and very probably is collectively 
implied by them under appropriate reformulation. 



10 

+ 
Theorem 3;  If A = a  > 0 and equation (2) is designated to be equation v in 

Instruction 4 of the RPA, then 

a. = -a.  and 
is    is 

a.  > a.. > 0 for i ^ s . 
is   ij = 

Proof;  Since a  = 1 , a, = -a.  .  Also, for j ^ s , a.. = a, . - fa. ./a, "la. 
         vs    'is    is       '     J    '  ij   ij   L ij  isJ is 

The theorem follows at once from the fact that u > [u] > u - 1 for all 

u 

Note that If a  > a  ', then Theorem 3 implies that one may repeatedly select 

equation i as source equation for (2) in instruction 3A and thereby eventually 

assure a.  "^ aJ „ , unless, of course,  A becomes dual feasible in the interim. 
is = 10 '      ' ' 

By reference to this fact, R. D. Young then gives the following prescription for 

the selection of the source equation:  use any rule that assures, for each i > 1 

(including i = r), a.  < a.  will occur at finite intervals.  Theorem 3 provides a 0      '  is = io 

ready mechanism for implementing this prescription, as indicated by our foregoing 

remarks. 

We will here give some alternate choice rules that also produce a convergent 

primal algorithm and are easily justified within the framework of our present develop- 

ttt ment. The first rule is slightly more flexible then the one given above. 

Theorem 3 was first introduced in the context of a primal algorithm by Young in 
[6], and in the context of a dual algorithm at about the same time by the author 
in [2]. 

tt 
Since    a    /a      ■ 0  ,  equation    i    is a  permissible source equation in instruction 
3A. 10    1S 

ttt It  is,   however,   close   in spirit  to Young's justification  of  his  rule. 
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Rule 1; Make any choice that assures a  < a   at finite intervals, and 
  rs = ro 

it periodically reduces a.   for the least i > 1 such that r        ^ is = 

a.  > a. 
is   io 

We note that, since a  > 1  (by  (PI)), it follows that a,     > a.   for rs =     ^ is = is 

a.  > 0 , and hence (a.  > a.)=>(a.  > a. Wequivalently, (a.  < a. )=>(a* < a. )) , is «  * v is   i'  Ms   io' M       -"^15= io'  \ is = io" 

Consequently, Rule 1 is meaningful and can be implemented by repeatedly selecting 

equation i as the source equation until a.   is decreased, unless A becomes 

dual feasible and the algorithm terminates first.  We prove that this rule provides 

a finite algorithm as follows. 

Justification of Rule 1; As observed earlier, A  can be changed only a 

finite number of times.  Hence, for each i , there exists a finite 

constant U.  such that a,„ < IT  for all values assumed by a. 
i io = i io 

Assume that Rule 1 is not finite.  Then there is an infinite set T 

of A matrices in which a  < a  < U  . Since A  is lexico- rs = ro = r s 

graphically strictly increasing and a  < 0 it follows that a 

can only assume a finite number of values in T and hence must 

eventually become constant (both in T and outside of T).  Applying 

this argument to successive components of A , at least one of which 

must be unbounded, there exists an index q ^ 1  such that for all 

A matrices after an initial finite number (call the infinite re- 

maining set of matrices  S), a  > U > a   and a,   is nondecreasing & qs   q = qO       is e 

for all  i < q .  But at some point in S , Rule 1 will reduce a" 
* 

.s 

for some  i < q  such that a.  > a,  , which is impossible.  This 
= M is   io 

4- 

completes  the  justification. 

t 
It is clear from this proof that a   and a   may alternately be replaced by 

U  and U.  in the specification of Rule 1.  Also, it is unnecessary to require 
r      i 

a.   to be decreased unless it has been nondecreasing for some finite duration. 
is 
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The second rule we give has a somewhat different character than the first, 

drawing on additional results underlying the Pseudo Primal-Dual Algorithm.  The 

Pseudo Primal-Dual Algorithm extablishes dual feasibility by a strict increase in 

the first nonzero component of A  at each step, thus providing a more evident 
s 

push toward convergence  than the  successive lexicographic  increases  in    A    .     In 
s 

the interest of achieving comparable advances toward convergence with a primal 

algorithm, one is tempted to select a source equation whenever possible that will 

result in a - - a„  .  The somewhat surprising fact is that such a choice will 
OS      OS KB 

indeed produce a finite algorithm, as we now show. 

Rule 2;  At finite intervals:  select as source equation (if possible) one 

that will result in a - > a  , and continue the selection of source 
Os    os 

equations by this criterion until there are none that satisfy it. 

tt 
As a basis for establishing the validity of this rule, we introduce - 

Theorem 4;  For A and Ä satisfying conditions  (PI)  and  (P2) , and 

an  < 0 : 
Os 

(a - < a ) =>(a - > an ) . y rs    rs    Os   Os 

Proof;  By Theorem 2, (HI)  is satisfied, hence by Theorem 1 

a a - < a a - .  Since a  < 0 and a  > 0 , we have 
os rs ■ rs Os 0s rs 

a -/an  < a -/a  < 1 , hence a - > a 
Os  Os ■ rs rs Os Os 

A dual feasible matrix is driven dual infeasible in such a way that equation r 
occurs naturally in X » AT .  Then dual feasibility is restored by continued 
selection of equation r as the source equation, and the net progress in An 
between two consecutive instances of dual feasibility is at least as 
great as that produced by pivoting with the dual simplex method. 

tt 
This result abstracts a portion of Theorem 2 of [3].  Part of the remainder of 
the theorem is developed in the justification for Rule 2. 
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The completed proof that Rule 2 yields a finite primal algorithm is as 

follows: 

Justification of Rule 2: Assume that the rule is not finite. By Theorem 3, 

if equation r is selected as the source equation, then a - < a rs rs 

and hence by Theorem 4 a
0
s > a 0s • Thus, Rule 2 assures 

a rs foran infinite number of A matrices. Identify q 

S as in the justificat ion for Rule 1. If q were selected as 

a - < a 

and 

source equation in S (it is always eligible), we have qs qs 

(by Theorem 3), and this in conjunction with a*- > a* 
qs = qs implies 

-a > a - • Then by Theorem 4, for every A matrix in S there 
rs rs 

is a source equation available (namely q) that will yield 

-a
0
; > a

0
s . Rule 2 will thus produce an infinite number of con-

secutive integer increases in 
t 

a
0
s , which is impossible. 

Until now we have assumed that the algorithm terminates only when A becomes 

dual feasible. A basis for eliminating this assumption, and hence for increasing 

tt 
the effectiveness of the choice rules, is embodied in the following theorem. 

t 

tt 

It may be noted that Rule 2 remains valid by this proof when the condition 
- -a - < a replaces a - > a . An argument mirroring the proof of Theorem 4 rs rs Os os 
also shows that selecting equation i as source equation will result in 
- - * * a - < a whenever ai- > ai Other rules closely related (but not e-rs rs s • s 
quivalent) to the foregoing ones can immediately be inferred from this: e.g., 
enforce a < a at finite intervals and periodically select any source ers • ro 
quation i such that ais* > ai

0 
and a -* > a * , continuing the selection of is • is 

i by this criterion as long as possible. 

This theorem can alternately be justified by the observation by R. D. Young that 
an appropriate multiple of row r provides a feasible solution to the dual of 
Pl (defined for the current A matrix). In this connection, Ben-Israel and 
Charnes [1] anticipate the present use of this result by advoca ting the solution 
of an auxiliary problem to prescribe termination before A is dual feasible. 
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Theorem 5: Assume that A is dual infeasible and satisfies (Pl) and (P2) • 

Then the optimal value of x
0 

must satisfy 

[ * ] -a a 
r o os 

Proof: Let P2' be the problem obtained from P2 by introducing a new variable 

tw , and replacing each equation o f P2 by 

n 

xi • ai o + L aij (-tj) 

j•l 

+ a 1-t ) i = 0 1 m + n + 1 
iw w ' ' • · · · • ' 

(where, e.g., r • m + n + 1) , and adjo i ning the two additional equations 

These last equations assure that e?ery optimal solution P2' is also op-

timal for P2 • disregarding t • xm+n+2 w 

equal 0). Let -ai/ a os 
t 

for a = iw 

clearly w satisfies the requirements 

r is selected as the source equation 

a 
place o f a rs (whether or not ~ 

a 
rw 

It follows from Theorems 3 and 4 

i = 

for 

in 

< e w 

that 

and xm+n+3 (which must all 

0, 1 t • •• ' m + n + 1 . Then 

s in P2 ' . Suppose equation 

P2 I , with a taking the rw 

) 

a -ow 
> a ow where w denotes 

the index that corresponds to s in P2' . But a = -1 , hence ow 

a - z 0 (it must be an integer) and A is dual fe asible in P2' (though ow 

possibly not primal f easible). Consequently, a
00 

(in P2') provides an 

upper bound for x
0 

But from instruction 4 of the RPA, with w re-

placing s , we have a
00 

= a
00 

+ (-a a* ] , since 
r o os a • -1 and 

ow 
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1 t 
a      » » - —35- • rw          a              a 

OS              Os 

It Is immediate from Theorem 5 that X = AQ provides optimal solution to 

P2 whenever a  > . This fact not only permits earlier termination of 
Os    a }  v 

ro 

the algorithm, but also gives rise to an additional choice rule. 

Suppose that X = AT is augmented by the equation 

n 

x = a  + >  a .(-tj u   uo l^   ujv y 
J = l 

where a , ■ -a ,  for 1 > 1 and -a   is a nonpositive lower bound for 
uj    Oj      J » uo        v 

Ja .t. . Then we have 

Rule 3:  Replace a  < a   by a  < a   in Rule 1, and terminate when 
    r     rs * ro     us ■ uo 

a >   (if A is not dual feasible). 
os    a  A ro 

Justification  for Rule  3:    The justification is  the  same  as  for Rule  1  if 

a       < C    occurs periodically for some  finite constant    C  .    Other- rs " 

wise,   if the algorithm doesn't converge,  a      >  U     •   U    > a    a ft   rs   u   r = uo ro 

for all A matrices except an initial finite number. In some of 

of the subsequent matrices a  > a  = -a   and hence 
u    =    us os 

a*     >       ,  contrary  to  the nonconvergence  assumption. 
08    ar0 

More generally in defining P2,  let a^  = -ka_, /a   for k > 0 . Then selec- 0     ^ e iw     is os 
ting r as a source equation yields a  = a  + k[p /k]  for j = 0, 1, ..., n 

where p. ■ -a .a^  . Thus a more restrictive upper bouid on x  is obtained 
J    rj Os vv 0 

by selecting k > 0 to minimize a  + k[p /k]  subject to k[p /k] > a 

(to assure a . > 0) , j » 0, 1, .., , n . Note that a /k must be an integer 
oj   ■ OS 6 

to  satisfy this   latter inequality for    j  =  s   . 

Since    a„       is  nondecreasing,     a      <  a  n     implies    a      < a  n     for an appropriately Os rs = rO   v rs = u0        w    r 3 
large value of  a   , and hence Rule 3 includes Rule 1 as a special instance. 
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